

- 1.- INTRODUCTION
- 2.- EVOLUTION OF PASSIVE SAFETY
- 3.- CONTRIBUTION OF NCAP
- 4.- EVOLUTION OF ACTIVE SAFETY
- 5.- PROTECTION LEVELS
- 6.- CONCLUSIONS

1.- INTRODUCTION

- 2.- EVOLUTION OF PASSIVE SAFETY
- 3.- CONTRIBUTION OF NCAP
- 4.- EVOLUTION OF ACTIVE SAFETY
- 5.- PROTECTION LEVELS
- 6.- CONCLUSIONS

Who we are and what we do

Applus IDIADA is an engineering partner to the automotive industry providing complete solutions for product development projects worldwide

Our assets:

- Team of more than 1.700 professionals
- First class state-of-the-art testing facilities
- International presence in 23 countries
- Innovation in new services and technologies

International presence

Advanced development tools

Small overlap IIHS

Small overlap 25% 64 kph barrier & LCW

- 32 load-cell array (8 x 4)
- Tri-axial load cells
- Developed own analysis software tool

Small overlap NHTSA

RMDB

- 18 uniaxial load cells
 - Rated force: 400 kN
 - Weight 70 g
- •Development on own analysis software tool

- 1.- INTRODUCTION
- 2.- EVOLUTION OF PASSIVE SAFETY
- 3.- CONTRIBUTION OF NCAP
- 4.- EVOLUTION OF ACTIVE SAFETY
- 5.- PROTECTION LEVELS
- 6.- CONCLUSIONS

Front crash test dummies

Side crash test dummies

Child crash test dummies

Weight increase

• Vehicle weight increase is not only based on passive safety requirements

Passive safety components

New passive safety components

2010 2015 2020

- 1.- INTRODUCTION
- 2.- EVOLUTION OF PASSIVE SAFETY
- 3.- CONTRIBUTION OF NCAP
- 4.- EVOLUTION OF ACTIVE SAFETY
- 5.- PROTECTION LEVELS
- 6.- CONCLUSIONS

What is Euro NCAP

- NCAP states for New Car Assessment Programme,
- Its mission is to provide consumers a realistic and independent assessment of the safety performance of vehicles recently launched in the markets

Regulation

- = mandatory requirement
- = minimum safety level for all the vehicles on the road

NCAP

- = consumer information
- = ranking
- = not all the models and versions sold in the market are assessed

Why NCAP is different from regulation?

Example: HIC value (injury criteria for head)

If there is only Regulation and no NCAP

Only Vehicle 1 would be forbidden on the roads because HIC exceeds the regulatory limit

Consumers can't know that vehicle 4 is far much better than vehicle 3 and 2.

NCAP's overview

Role of IDIADA in Euro NCAP

0

- Official Euro NCAP test house for all tests and assessments (around 60
- complete vehicle evaluations made since **2002**)

0

Member of Euro NCAP WG: Pedestrian, Heavy vehicles, Front Impact, Side Impact, Whiplash, Child, ISA (Intelligent Speed Assistance), ESC, AEBS (Autonomous Emergency Braking Systems)

- 1.- INTRODUCTION
- 2.- EVOLUTION OF PASSIVE SAFETY
- 3.- CONTRIBUTION OF NCAP
- 4.- EVOLUTION OF ACTIVE SAFETY
- 5.- PROTECTION LEVELS
- 6.- CONCLUSIONS

Relevant steps in active safety

- 1.- INTRODUCTION
- 2.- EVOLUTION OF PASSIVE SAFETY
- 3.- CONTRIBUTION OF NCAP
- 4.- EVOLUTION OF ACTIVE SAFETY
- 5.- PROTECTION LEVELS
- 6.- CONCLUSIONS

Cases addressed by frontal crash tests

- Euro NCAP ODB as a reference
- Equivalent to IIHS evaluation

- In terms of energy,*
 - it is equivalent to a head-on collision, both vehicles driving at 50 km/h
- In terms of occupant protection, top performing vehicles would provide**
 - <5% injury risk AIS3 in head area
 - <5% injury risk AIS3 and AIS4 in chest area</p>
 - * FIMCAR project (EU funding)
 - ** Euro NCAP AOP assessment protocol

Scenarios addressed by AEB

Euro NCAP AEB for passenger cars*

- In terms of energy,**
 - it is equivalent to a head-on collision, both vehicles driving at 25 km/h

- * Euro NCAP AEB test results for Volvo V40
- ** Perfect restitution of the collision assumed, in order to find equivalents with passive safety tests

Scenarios addressed by AEB

Requirement for heavy trucks in EU*

Stationary test

≥0.8s

≥ 20 km/h

C. Andrews Co.		7		
	To be the		Matteles-bear Ounterlies	
	PO TO			
		The !		

Moving test

≥ 1.4 s before

braking

Warning modes		Speed reduction
≥ 1.4 s before braking	≥0.8 s	No impact

- * UN-ECE Regulation 131 Advanced Emergency Braking Systems (AEBS)
 - •Mandatory in new certified vehicles as from 01/11/2013
 - •All vehicles 01/11/2015

* ASSESS project (EU funding, based on HANNAWALD 2008)

Rear-end collisions (impacted vehicle)

Scenarios addressed by passive safety in Whiplash prevention

Euro NCAP AEB for passenger cars*

- Performance criteria**
 - "As the injury mechanism is not well enough understood, the assessment is based on 7 seat performance criteria which are not fully confirmed by biomechanical research"
- Euro NCAP Whiplash test and assessment protocol
- ** The Euro NCAP whiplash test, van Ratingen et Altri., ESV 2009

Rear-end collisions (impacted vehicle)

Scenarios addressed by AEB – Whiplash prevention

- Euro NCAP for passenger cars*
- Equivalent to new IIHS protocol for AEB

- In terms of occupant protection, top performing vehicles:
 - should avoid all impacts up to 50 km/h against stationary vehicles

- * Euro NCAP AEB test results for Volvo V40
- ** Video from VW Up!

Cases addressed by pedestrian protection tests

• Euro NCAP PP protocols as a reference

- In terms of occupant protection, top performing vehicles would provide*
 - <5% injury risk AIS3 in head area</p>
 - <20% risk of femur/pelvis fracture</p>
- Unfortunately, reaching these levels is very constrained from a design point of view

Scenarios addressed by AEB VRU

• Draft Euro NCAP AEB VRU protocols as a reference

	<u> </u>	□ →		
Scenario name	Running adult crosses from far- side	Walking adult crosses from near- side 25%	Walking adult crosses from near- side 75%	Walking child crosses from near- side behind obstruction
Pedestrian velocity	8 kph	5 kph	5 kph	5 kph
Vehicle velocity	10-60 kph	10-60 kph	10-60 kph	10-60 kph
Obstruction	по	no	No	yes
Impact position	50 % (center)	25% (near-side)	75% (off-side)	50 % (center)

Scenarios addressed by AEB VRU

Draft Euro NCAP AEB VRU protocols as a reference

Fatalities addressed*

* Data from Erik Rosén and Ulrich Sander, 2009

Summary

	Passive safety	Active safety
On-coming and rear-end collisions	 Protection over 50 km/h deltaV impacts Low probabilities of severe injuries 	 Avoidance in collisions with up to 50 km/h closing speed Avoidance brings full protection Mitigation needs to rely in passive safety
Whiplash protection in urban rear-end crashes	Biomechanical data still missing	Avoidance at low speeds efficient and feasible
Pedestrian protection	 Complex to protect up to the 40 km/h impact speed range Issues with secondary impact not addressed 	 Performance still limited to certain scenarios Feasible to avoid up to the 40 km/h impact speed range Beyond this range, needs to rely in passive safety
Additional considerations	Will always remain	 Very useful when interacting the driver Constrains for automated actions Cannot guarantee 100% operation

- 1.- INTRODUCTION
- 2.- EVOLUTION OF PASSIVE SAFETY
- 3.- CONTRIBUTION OF NCAP
- 4.- EVOLUTION OF ACTIVE SAFETY
- 5.- PROTECTION LEVELS
- 6.- CONCLUSIONS

Conclusions

- Legal and consumer requirements are becoming more complex and diverse
- Safety developments are mainly being lead by consumer test programes, both for active and passive safety functionalities
- Brand image is affected by the safety performance
- It is not clear whether the future increase of active safety might help to stable or reduce
 - Test configurations
 - Test number
 - Passive safety components
 - Vehicle weight

as different considerations need to be made.

Applus IDIADA asprick@idiada.com aaparicio@idiada.com

MF2025

Automotive Frontiers.